Bounded holomorphic functions on finite Reimann surfaces
نویسندگان
چکیده
منابع مشابه
Bounded Holomorphic Functions on Bounded Symmetric Domains
Let D be a bounded homogeneous domain in C , and let A denote the open unit disk. If z e D and /: D —► A is holomorphic, then ß/(z) is defined as the maximum ratio \Vz(f)x\/Hz(x, 3c)1/2 , where x is a nonzero vector in C and Hz is the Bergman metric on D . The number ßf(z) represents the maximum dilation of / at z . The set consisting of all ß/(z), for z e D and /: D —► A holomorphic, is known ...
متن کاملWeak Topologies on the Bounded Holomorphic Functions
Let G be a region in the complex plane such that there is a nonconstant bounded holomorphic function on G, and denote the algebra of all such functions by BH{G). Let H^{G) denote the Banach algebra that arises when BH{G) is endowed with the supremum norm. In the case where G is the unit disc D, H*>(G) has been extensively studied, mostly by a real-variables analysis of the radial boundary value...
متن کاملErgodicity, bounded holomorphic functions and geometric structures in rigidity results on bounded symmetric domains
Over the years the author has been interested in rigidity problems on bounded symmetric domains of rank ≥ 2. In this article we give an overview on rigidity problems arising from holomorphic mappings either on bounded symmetric domains of rank ≥ 2 or on their finite-volume quotient manifolds into complex manifolds, placing the focus on recent developments. The article highlights the use of some...
متن کاملHyperbolic Mean Growth of Bounded Holomorphic Functions in the Ball
We consider the hyperbolic Hardy class %Hp(B), 0 < p < ∞. It consists of φ holomorphic in the unit complex ball B for which |φ| < 1 and sup 0<r<1 ∫ ∂B {%(φ(rζ), 0)} dσ(ζ) < ∞, where % denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type g-function and the area function are defined in terms of the invariant gradient of B, and membership of %Hp(B) ...
متن کاملMatricial Topological Ranks for Two Algebras of Bounded Holomorphic Functions
— Let N and D be two matrices over the algebra H∞ of bounded analytic functions in the disk, or its real counterpart H∞ R . Suppose that N and D have the same number n of columns. In a generalisation of the notion of topological stable rank 2, it is shown that N and D can be approximated (in the operator norm) by two matrices e N and e D, so that the Aryabhatta-Bezout equation X e N + Y e D = I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1965
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1965-0183882-4